THE DIFFERENCE BETWEEN CNN AND DL

Yuxuan Luo, Zhongwu Xie

Outlook

- Introduction of DL
- The difference of CNN between MLP
- Other Deep Learning models

Deep Learning

No formal definition.

Models contain several features may be the deep learning model:

- contains a collection of statistical machine learning techniques
- used to learn feature hierarchies
- often based on artificial neural networks

Generally, when the model more than 5 layers that is Deep learning model. There are many deep learning models .

e.g.

Multi Layers Perception, Convolutional Neural Network, Residual Network,

Deep Belief Network, Recursive Neural Network and etc.

CNN is one of famous deep learning model.

Differences:

1 datasets
 2 features extracting
 3 parameters-sharing
 4 sparsity of connections

CNN

Filter W1 (3x3x3)				
w1[:,:	,0]		
1	1	-1		
-1	-1	1		
0	-1	1		
w1[:,:	,1]		
0	1	0		
-1	0	-1		
-1	1	0		
w1[:,:	,2]		
-1	0	0		
-1	0	1		
-1	0	0		

Bias b1 (1x1x1) b1[:,:,0] 0

toggle movement

Output Volume (3x3x2)

o[:,:,0]

7 5

-1 -1

-1 4

-5 -8

-4 -4

-5 -5

0[:,:,1]

6

3

2

2

0

CNN update the Filter weight so that it can extract features correctly, but it share the weight in extracting the same kind of features.

Features map

Application Area

Machine Translation

Fact Extraction

FACTS:

Obama is the president of the US. Obama met with leaders. Asia has leaders.

Cancer detection

	Twitter search: #coffee
	 positive Here's to the start of an awesome day! Have a great day everyone. #GK #Morning #Coffee #Love #Insurance #Jamaica https://t.co/kkoyytgFsy RT @PETEGARZA329: Rainy & cozy day puts a smile in my soul. Plus I had an amazing dream last night. #coffee & #plano kind of morning #Good
e neutral e negative positive	 Just saw this on Amazon: FRENCH MARKET #Coffee Singe #Serve Cups, Fren_by #French Market Coffee Roasr \$53.63 https://tco/biY2MXrhvQ #CoffeeMaker #Cafe PROCTOR SILEX//12 CUP #Coffee MAKER// MODEL A-12// whitehttps://tco/kvZUOAZZwZ #Shopping #Mall https://tco/APjq0qzwC6

Twitter Sentiment

Deep Learning Model

1.Deep Belief Network

Is a Generative model, consist of several Restricted Boltzmann Machines. Unsupervised learning, pre-learning, fine-tune to train models.

V

U

х

2.Recursive Neural Network

Using in language modeling , generating text, Machine Translation. Make use of sequential information and dividing into a tree

3.Residual Neural Networks

Revolution of Depth

What is the advantages of deep model with more layers?

- The "level" of feathers will enrich, when the depth of neural network increase.
- With more deeper layers, the network has more powerful representational ability.

Driven by the significance of depth, a question arises :

- The problem of vanishing/exploding gradients.
- Degradation problem.

Vanishing/exploding gradients

If the value of weights are very small, the gradients will vanish. If the value is greater than 1,the gradients will be very large.

Degradation problem

- A solution by construction:
 - original layers : copied from a learned shallower model
 - Extra layers :learn to set as identity
 - At least the same training error
- Richer solution space
- A deeper model should not have higher training error

But the result is ...

Degradation problem

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- "overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

But the problem doesn't cause by overfitting.

Optimization difficulties : solvers cannot find the solution when going deeper --- the solvers might have difficulties in approximating identity mappings by multiple nonlinear layers.

A building block

• Plaint net

• Residual net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)

H(x) is any desired mapping, hope the 2 weight layers fit H(x)hope the 2 weight layers fit F(x)Let H(x) = F(x) + x

What the residual network looks like

34-layer residual 7x7 conv, 64, /2

Why can the residual block learn identity mapping easier?

Whether have we addressed the two problems?

- The problem of vanishing/exploding gradients.
- Degradation problem.

7x7 conv, 64, /2 paol, /2 3x3 conv, 64 3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128 3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 512

3x3 conv, 512 avg pool fc1000

(5)

3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512

Solve the problem of vanishing/exploding gradients.

- If identity were optimal, easy to set weights as 0.
- If optimal mapping is closer to identity,

easier to find small fluctuations

$$y_l = h(x_l) + F(x_l, W_l)$$

 $x_{l+1} = f(y_l)$

If f is also an identity mapping: $\mathbf{x}_{l+1} \equiv \mathbf{y}_l$, we can put Eqn.(2) into Eqn.(1) and obtain:

$$\mathbf{x}_{l+1} = \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l). \tag{3}$$

Recursively $(\mathbf{x}_{l+2} = \mathbf{x}_{l+1} + \mathcal{F}(\mathbf{x}_{l+1}, \mathcal{W}_{l+1}) = \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l) + \mathcal{F}(\mathbf{x}_{l+1}, \mathcal{W}_{l+1})$, etc.) we will have:

$$\mathbf{x}_{L} = \mathbf{x}_{l} + \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i}), \qquad (4)$$

Eqn.(4) also leads to nice backward propagation properties. Denoting the loss function as \mathcal{E} , from the chain rule of backpropagation [9] we have:

$$\frac{\partial \mathcal{E}}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \frac{\partial \mathbf{x}_L}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \left(1 + \frac{\partial}{\partial \mathbf{x}_l} \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathcal{W}_i) \right).$$

Solve the problem of degradation to some extent.

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

The intuition of Residual network.

Residual networks can be viewed as a collection of many paths(it behaves like Ensembles of Relatively Shallow Networks).It consists of most moderate networks and a small portion of shallow and deep networks.

(a) Deleting f_2 from unraveled view

7x7 conv, 64, /2 pcol, /2 3x3 conv, 64 ۲ 3x3 conv, 64 *----3x3 conv, 64 3x3 conv, 64 *---3x3 conv, 64 3x3 conv, 64 3x3 conv, 128, /2 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 * 3x3 conv, 128 3x3 conv, 128 + 3x3 conv, 128 3x3 conv, 128 3x3 conv, 256, /2 3x3 conv, 256 * 3x3 conv, 255 3x3 conv, 255 3x3 conv, 255 3x3 conv, 256 3x3 conv, 256 * 3x3 conv, 256 3x3 conv, 256 ۲ 3x3 conv, 255 3x3 conv, 256 3x3 conv, 256 ****** 3x3 conv. 512, /2 3x3 conv, 512 ****** 3x3 conv, 512 ٠ 3x3 conv, 512 * 3x3 conv, 512 3x3 conv, 512 avg pool fc1000

34-layer residual

The intuition of Residual network.

From the result of experiment :

The Residual Network looks seemingly very deep, but the network that actually works is not so deep.

It provides a way of thinking about model compression.

Reference

- He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
- He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]//European conference on computer vision. Springer, Cham, 2016: 630-645.
- Veit A, Wilber M J, Belongie S. Residual networks behave like ensembles of relatively shallow networks[C]//Advances in Neural Information Processing Systems. 2016: 550-558.

Thanks for your attention.